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Scaling law for the Lyapunov spectra in globally coupled tent maps

Satoru Morita*
‘‘Research for the Future’’ Project, Faculty of Science and Technology, Keio University, Shin-Kawasaki-Mitsui Building West

890-12 Kashimada, Saiwai-ku, Kawasaki 211-0958, Japan
~Received 29 December 1997; revised manuscript received 11 March 1998!

The collective motions in globally coupled tent maps are investigated in terms of Lyapunov spectra. The
scattered states are separated into two distinct phases by the characteristics of the Lyapunov spectra. In the
weak-coupling phase, the Lyapunov spectra obey a scaling law with varying system size. This scaling law
holds even in the strong-coupling phase except for the singular property of the largest Lyapunov exponent. The
Lyapunov exponents are estimated theoretically by using the random field approximation. These approximate
results reveal the relation between the Lyapunov exponents and the distribution of the elements. Furthermore,
the features of the band structure in the distribution are explored.@S1063-651X~98!04910-1#

PACS number~s!: 05.45.1b, 05.70.Ln, 82.40.Bj
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I. INTRODUCTION

The coupled nonlinear systems are used as mathema
models to study complex phenomena of systems out of e
librium in various fields, such as fluid dynamics, biologic
systems, chemical reactions, etc. When the elements o
coupled systems have chaotic dynamics, the dynamics o
full systems may be high-dimensional chaos. While the
ture of low-dimensional chaos has been well known, the
derstanding of high-dimensional chaos is not yet sufficie
In the present paper, let us consider high-dimensional ch
in terms of the Lyapunov spectrum. The Lyapunov spectr
is a set of the Lyapunov exponents (l0 ,l1 , . . . ,lN21),
where N is the dimension of the phase space and
Lyapunov exponents are put in order asl i>l i 11 . The
Lyapunov spectrum is a useful tool to study the structure
the phase space of high-dimensional chaotic systems@1–7#.

In the present paper, one of the simplest models is inv
tigated analytically. The model we use here is globa
coupled maps~GCM! @8#,

xt11~ i !5~12e! f „xt~ i !…1
e

N (
i 850

N21

f „xt~ i 8!…. ~1!

Here t represents a discrete time step,i the index of the
elements (i 50,1,2, . . . ,N21), ande the coupling strength
The one-dimensional mapf (x) gives the dynamics of the
element. We consider here the tent map

f ~x!512auxu. ~2!

The gradienta satisfies 1,a<2 for elements to give rise to
chaotic dynamics. The initial condition is such that the e
ments are uniformly distributed over in the interv
@21,1#. The variablex of each map is always bounded
the same interval. The model~1! is a mean-field version o
the coupled map lattice~CML!, which has been investigate
as a model of spatiotemporal chaos in the short-range
pling limit @9#. The global coupling in the model~1! may be
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regarded as either an idealization of long-range coupling
an approximation to short-range coupling in hig
dimensional lattices. It should be noted that the concep
space loses meaning for the global coupling.

One of the most prominent phenomena in GCM is a c
lective motion@10–23#. The collective motion is expresse
in terms of a macroscopic variable that depends on the
tions of all elements in the system. The collective motion h
been studied extensively since Kaneko observed a cohe
motion in globally coupled logistic maps@10#. As for glo-
bally coupled tent maps, the analysis in terms of t
Frobenius-Perron operator suggested there exist sev
types of collective motions@16–20#. In particular, the peri-
odic and quasiperiodic motions have been investiga
Similar coherent motions were observed also in coupled m
lattices@24–26# and globally coupled oscillators@27–29#. As
a macroscopic variable, we employ the mean field

ht5
1

N (
i 50

N21

f „xt~ i !…. ~3!

Thus, the coupling term in Eq.~1! is the mean field. Accord-
ingly, the motion of thei th element is described by the e
fective map that depends on time through the mean field
follows:

xt11~ i !5Ft„xt~ i !…[~12e! f „xt~ i !…1eht. ~4!

The collective motion of the system is expressed by the e
lution of the mean field.

The purpose of the present paper is to investigate the
ture of the Lyapunov exponents and the collective motio
There exist weak-coupling and strong-coupling phases in
region where the completely synchronized state is unsta
Numerical calculation shows that the Lyapunov spectra o
a scaling law in the weak-coupling phase. Even in the stro
coupling phase, the scaling law is valid except for the sin
lar property of the largest Lyapunov exponent. To expla
the scaling law, we estimate the Lyapunov exponents th
retically by the random field approximation used in@30–32#.
Theoretical calculation suggests that the weak-coupling
strong-coupling phases correspond to ‘‘variance dominate
and ‘‘mean dominated’’ phases in@31#, respectively.
4401 © 1998 The American Physical Society
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This paper is organized as follows. In Sec. II, the featu
of globally coupled tent maps~1! are introduced. In Sec. III
the numerical calculation of the Lyapunov spectrum is p
sented to show the scaling law. In Sec. IV, we calculate
Lyapunov spectrum by using the random field approxim
tion. Though the exact structure of the Lyapunov spectrum
not obtained, theoretical results agree qualitatively with
numerical calculation. A relation between the Lyapun
spectrum and the distribution of the elements is disclos
The transition between the above two phases is explore
Sec. V. This transition is related to the creation and the
tinction of two chaotic bands in the distribution of the el
ments. Section VI contains concluding remarks.

II. FEATURES OF GLOBALLY COUPLED TENT MAPS

In this section, some features of globally coupled te
maps~1! are presented. The globally coupled tent maps h
no clustering state, while clustering states are often obse
in other globally coupled systems@10#. Thus, the attractors
of Eq. ~1! are classified into completely synchronized
scattered states as follows.

In the completely synchronized state, where all eleme
always have an identical value, the motion of the mean fi
ht obeys the one-dimensional mapx° f (x). This state is
stable fora(12e),1. In the completely synchronized stat
only the largest Lyapunov exponentl0 is positive and the
othersl i>1 are negative. From simple algebra, we obta
l05 ln a andl i>15 ln @a(12e)#. It should be noted that the
largest Lyapunov exponent equals the Lyapunov exponen
the mapx° f (x), while the others equal the local-instabilit
rate

l local[ ln@a~12e!#, ~5!

which is defined by the rate of exponential divergence of
difference of two nearby elements@33#. Here, the term ‘‘lo-
cal’’ represents a property for the individual elements but
for a short time scale. It is a specific feature of globa
coupled tent maps that the local-instability rate is a we
defined exponent independent of the timet and the elemen
index i .

On the other hand, fora(12e).1, the completely syn-
chronized state is unstable. Thus, the elements are scat
and behave chaotically in time. This state is called the s
tered state in this paper. In the scattered state, the numb
positive Lyapunov exponents is alwaysN. Thus, there is a
bifurcation where the dimension of the motion chang
abruptly from 1 toN. The bifurcation occurs ata(12e)
51, where the local-instability rate is marginal, i.e.,l local
50. The N positive Lyapunov exponents mean that theN
elements are almost independent mutually. If it is assum
that N elements are completely independent mutually,
mean field is a constant value in the limit of large size
account of the law of large numbers whena(12e).A2.
@When 222n11

,a(12e),222n
, the mean field has a

2n-period motion.# However, the mean-field cannot be co
stant generally, except for the case with specific parame
values, even in the limit of large size@20#. Therefore, the
motions of all elements have mutual correlation. The me
s
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field has a complex motion that can be high-dimensio
chaos. In Fig. 1, we show examples of the motion of t
mean field.

In the previous paper@33#, the numerical calculation o
Lyapunov exponents showed that the system~1! has a tran-
sition that separates the scattered states into two dis
phases~weak-coupling and strong-coupling phases!. In the
weak-coupling ~strong-coupling! phase, the larges
Lyapunov exponentl0 decreases~increases! with increasing
e for fixed a. The transition is on account of a competitio
between the local-instability ratel local and the collective-
motion-instability rateL. Here,L is estimated by the non
linear Frobenius-Perron equation, which is obeyed by
distribution of the elements in the limit of large size.L is
expected to give the rate of exponential divergence betw
two nearby trajectories of the mean-field in the limit of lar
size. In the weak-coupling phase (l local.L), the largest
Lyapunov exponent obeys the scaling law

l02l local}
e

N
. ~6!

FIG. 1. Return maps of the mean field are shown over 10
time steps after 105 steps as transient.~a! a51.99, e50.25, N
5320. The enlargement is shown in the inset.~b! a51.99, e
50.45, N5320. The broken lines represent the criterion~45! in
Sec. V.
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On the other hand, in the strong-coupling phase (l local
,L), the largest Lyapunov exponentl0 approaches the
collective-motion-instability rateL with increasingN.

III. SCALING LAW OF LYAPUNOV SPECTRUM

In the previous paper, the scaling law~6! for the largest
Lyapunov exponent was observed in the weak-coup
phase. We investigate the nature of the Lyapunov expon
in more detail. First, the largest Lyapunov exponent is
plored. The scaling law~6! indicates that the difference be
tween the largest Lyapunov exponentl0 and the local-
instability rate l local is proportional to e and inversely
proportional toN. Here, let us consider the scaled large
Lyapunov exponent as (l i2l local)N/e. If the scaling law~6!
holds exactly, the scaled largest Lyapunov exponent mus
independent ofe and N. In Fig. 2, the scaled larges
Lyapunov exponent is plotted as a function ofe for three
values of the system sizeN and a51.99. Figure 2 shows
that, even in the weak-coupling phase (e,ec.0.41 for a
51.99@33#!, the deviation from the scaling law~6! increases
gradually with increasing coupling strengthe. Nevertheless,
the scaled largest Lyapunov exponents for three value
system size coincide in the weak-coupling phase. As a re
the relationship

l02l local}e ~7!

is valid only in the weak-coupling limite→0. In contrast, the
relationship

l02l local}
1

N
~8!

is always valid in the weak-coupling phase region, unlesN
is too small. In addition, we see from Fig. 2 that the relatio
ship

l02l local.
e

N
~9!

holds in the weak-coupling limite→0.
We now investigate the Lyapunov spectrum. Figure

FIG. 2. Log-log plots of the scaled largest Lyapunov expon
(l i2l local)N/e versus the coupling strengthe for three values of
system size. The gradient parameter of the map is fixed aa
51.99. The largest Lyapunov exponent is obtained from an ave
over 105 steps after discarding 105 steps as transient.
g
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-

t

be

of
lt,

-

3

shows several examples of the Lyapunov spectra. Figure~a!
shows the Lyapunov spectra fore50.2 and several values o
a. For all parameters in Fig. 3~a!, the systems are in the
weak-coupling phase. In Fig. 3~a!, all Lyapunov spectra have
almost flat shapes. Figure 3~b! shows the Lyapunov spectr
for a51.99 and several values ofe. For e50.45, where the
system is in the strong-coupling phase, the Lyapunov sp
trum has a sharp bend neari 50. In the other cases, wher
the systems are in the weak-coupling phase, Lyapunov s
tra have almost flat shapes again. However, the Lyapu
spectra are not degenerate but have a structure obeyi
scaling law in the weak-coupling phase, as is seen in
following.

Taking account of Eq.~8!, we introduce the scaled
Lyapunov spectrum defined as

L~ i /N![N~l i2l local!. ~10!

In Fig. 4, two examples of the scaled Lyapunov spectra
presented forN580,160,320. Figure 4~a! shows that the

t

ge

FIG. 3. Lyapunov spectra are plotted forN580. ~a! The cou-
pling strength is fixed ase50.2 and the gradienta is 1.5 ~circle!,
1.6 ~diamond!, 1.7 ~triangle up!, 1.8 ~plus!, 1.9 ~cross!, and 1.99
~triangle down!. ~b! The gradient is fixed asa51.99 and the cou-
pling strengthe is 0.05 ~triangle up!, 0.15 ~triangle down!, 0.25
~diamond!, 0.35 ~circle!, and 0.45~cross!.
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function L( i /N) is independent ofN in the weak-coupling
phase. Thus, the Lyapunov exponents can be written in
form

l i5l local1
1

N
L~ i /N;a,e!. ~11!

Figure 5 shows the scaled Lyapunov spectra for the s
parameters as Fig. 3~a!. When the gradienta is sufficiently
large, L(x;a,e) appears to be independent ofa. Figure 6
shows the scaled Lyapunov spectra for the same param
as Fig. 3~b!. The largere is, the steeperL(x;a,e) is. It
should be noted thatL(x;a,e)50 for e50.

On the other hand, in the strong-coupling phase,
scaled Lyapunov spectrumL( i /N) is not independent ofN,

FIG. 4. Scaled Lyapunov spectra are plotted for three value
system size.~a! Weak-coupling phase:a51.99, e50.25, that is the
same parameters as Fig. 1~a!. ~b! Strong-coupling phase:a
51.99, e50.45, that is the same parameters as Fig. 1~b!. ~c! The
blowup of ~b! for the range of 0< i /N<0.05. ~d! The enlargement
of ~b! for the range of 0<L( i /N)<2. The lines are to guide the
readers’ eyes. The horizontal broken lines in~a! and ~d! represent
the result~39! of the random field approximation.

FIG. 5. Scaled Lyapunov spectra are plotted for the same
rameters as Fig. 3~a!. The horizontal broken line represents th
result ~39! of the random field approximation. Fora>1.7, the
scaled Lyapunov spectra coincide with one curve.
e

e

ers

e

as is seen from Figs. 4~b! and 4~c!. When the system sizeN
increases, the largest Lyapunov exponent approaches
collective-motion-instability rateL, which is larger than
l local. As a result,L(0) is almost proportional toN. Never-
theless, the scaled Lyapunov spectraL( i /N) coincide with
one curve fori>1 as is seen from Fig. 4~d!. Therefore, the
Lyapunov exponents except the largest one can be writte

l i5l local1
1

N
L~ i /N;a,e! ~ i>1!. ~12!

Equation~12! indicates that the scaling law~11! holds except
the singularity for the largest one. However,L(x;a,e) di-
verges forx→0 in the strong-coupling phase.

IV. RANDOM FIELD APPROXIMATION

In this section, the theoretical estimation of Lyapunov e
ponents by the random field approximation is presented. T
estimation will disclose the relation between the t
Lyapunov exponents and the distribution of the eleme
xt( i ).

A. Evolution of the tangent vector

Lyapunov exponents can be computed by the lineari
dynamics of the tangent vector$j t( i )% in the tangent space a
$xt( i )% of Eq. ~1!

j t11~ i !5~12e!st~ i !j t~ i !1
e

N (
i 850

N21

st~ i 8!j t~ i 8!, ~13!

wherest( i )52asgn„xt( i )…. Thus, the tangent vector at tim
T is given by

jWT5S )
t50

T21

JtD jW0 , ~14!

whereJt is anN3N Jacobian matrix,

$Jt% i j [~12e!st~ i !d i j 1
e

N
st~ i !. ~15!

We define here the multiplier matrixMT as

of

a-

FIG. 6. Scaled Lyapunov spectra are plotted for the same
rameters as Fig. 3~b!. For e50.45, the large exponents@L(0)
528.0 andL(1/N)53.2] are not plotted.
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MT5 )
t50

T21

Jt . ~16!

The Lyapunov exponents are given as

l i5 lim
T→`

1

2T
ln gT

i , ~17!

where gT
i( i 50,1, . . . ,N21) are the N eigenvalues of

MT
tMT , whereMT

t is the transpose ofMT . We estimate the
multiplier matrixMT by using the method in@30–32#, which
is similar to the method used in the theory of directed po
mers in a random medium.

B. Assumption

To begin with, the assumption is presented in this subs
tion. An element$M% i j of the multiplier matrixMT consists
of the sum of the multipliers for all paths connecting (i ,0)
with ( j ,T21) in element-time space. These paths are
fined by the functionsi k(t), wherek is the index of the path
The multiplier for a certain pathk is given by

Mk5S e

ND mS 12e1
e

ND T2m

Sk , ~18!

where

Sk[ )
t5o

T21

st„i k~ t !…. ~19!

Here m represents the number of integerst that satisfy
i k(t)Þ i k(t11) for 0<t<T21. Accordingly,m is an inte-
ger in @0,T#, which depends on pathk. Here, let us assum
that st( i ) are random variables as follows:

P@st~ i !5a#5p,

P@st~ i !52a#512p, ~20!

where p describes the skewness of the distribution of
elements. Then,Sk are also random variables, whose pro
ability is given by

P~Sk5aT!5
11~2p21!T

2
,

P~Sk52aT!5
12~2p21!T

2
. ~21!

Two random variablesSk andSk8 for different pathsk andk8
are not necessarily independent of each other. To obtai
analytical solution, we assume thatSk for all paths are mu-
tually independent random variables. Consequently, the
ment of the multiplier matrixMT is considered as the sum o
the mutually independent random variables~18! over all
paths.

C. Multiplier matrix

We now estimate the multiplier matrixMT by using the
assumption in the preceding subsection. First, the diag
-

c-

-

e
-

an

le-

al

elements$M% i i are estimated. A simple calculation of th
combination indicates that the total number of paths conn
ing (i ,0) with (i ,T21) for a certain fixed value ofm is

Cd~m,T!5F ~N21!m

N
1S 12

1

ND ~21!mG T!

m! ~T2m!!
.

~22!

As a result of Eqs.~18!, ~21!, and~22!, there are the numbe
Cd(m,T) of the random variables which are

S e

ND mS 12e1
e

ND T2m

aT ~23!

with probability

11~2p21!T

2
~24!

and

2S e

ND mS 12e1
e

ND T2m

aT ~25!

with probability

12~2p21!T

2
. ~26!

Because of the assumption that they are mutually indep
dent, it is deduced by the central limit theorem that the s
of the above random variables is a random variable t
obeys the Gaussian distributionN(mm ,sm) through central
limit theorem. Here the averagemm and the standard devia
tion sm are given by

mm5Cd~m,T!S e

ND mS 12e1
e

ND T2m

aT~2p21!T,

sm
25Cd~m,T!S e

ND 2mS 12e1
e

ND 2T22m

a2T@12~2p21!2T#.

~27!

The diagonal elements$MT% i i are given by the sum of the
variables, each of which obeys the Gaussian distribut
N(mm ,sm) from m50 to m5T. Because of the nature o
Gaussian distribution,$MT% i i obey the Gaussian distributio
N(md ,sd), where

md5 (
m50

T

mm ,

sd
25 (

m50

T

sm
2 . ~28!

By using the binomial theorem,md andsd are described as



stribution
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md5
1

N
@a~2p21!#T1S 12

1

ND @a~2p21!~12e!#T,

sd
25

1

N
a2TF S 12e1

e

ND 2

1S e

ND 2

~N21!GT

@12~2p21!2T#,

1S 12
1

NDa2TF S 12e1
e

ND 2

2S e

ND 2GT

@12~2p21!2T#. ~29!

Second, we consider the off-diagonal elements$MT% i j ( iÞ j ). The total number of the paths connecting (i ,0) with (j ,T
21) for a certain value ofm is

Cod~m,T!5F ~N21!m

N
2

1

N
~21!mG T!

m! ~T2m!!
. ~30!

From the same calculation as the above one, it is obtained that the off-diagonal elements obey the Gaussian di
N(mod,sod), where

mod5
1

N
@a~2p21!#T2

1

N
@a~2p21!~12e!#T,

sod
2 5

1

N
a2TF S 12e1

e

ND 2

1S e

ND 2

~N21!GT

@12~2p21!2T#2
1

N
a2TF S 12e1

e

ND 2

2S e

ND 2GT

@12~2p21!2T#. ~31!
th
.
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D. Results

The results in the preceding subsection indicate that
multiplier matrix is expressed by two matrices as follows

One of them is the constant matrixAT given by

$AT% i j 5H 1

N
a1

T1
N21

N
a2

T ~ i 5 j !,

1

N
a1

T2
1

N
a2

T ~ iÞ j !,

~32!

where

a1[a~2p21!,

a2[a~2p21!~12e!. ~33!

In the case ofp51 or p50, which is expected to correspon
to the completely synchronized state, the multiplier mat
MT is expressed by only the constant matrixAT as MT

5AT . Then, the eigenvalues ofMT
t MT are calculated analyti

cally and we obtaingT
05a2T and gT

i 5@a(12e)#2T ( i
>1). According to Eq.~17!, the Lyapunov exponents ar
obtained asl05 ln a andl i5 ln @a(12e)# (i>1). These val-
ues coincide with the exact solutions in the completely s
chronized state.

The other matrix is the random oneRT . The elements
$RT% i j are mutually independent random variables obey
the Gaussian distributionN(0,1). In the case of 0,p,1,
which corresponds to the scattered state, the multiplier
trix MT is described as

MT.AT1a3
TRT. ~34!

for large value ofT, where
e

x

-

g

a-

a3[a~12e!A11
e~22e!

N~12e!2
. ~35!

Here we take into account only the predominant term of E
~29! and ~31!. Note thata3 is always larger thanua2u.

When ua1u,a3 , all the elements of the multiplier matrix
MT diverge exponentially asO(a3

T). Thus, the constant ma
trix AT is negligible. The multiplier matrix can be rewritte
in the form

MT.a3
TR. ~36!

When the eigenvalues ofRtR are denoted as$g i8%, the ei-
genvalues ofMT

t MT are given bya3
2Tg i8 . Since the eigenval-

ues $g i8% are independent ofT, we get all the Lyapunov
exponents as

l i. ln a35 ln a1 ln~12e!1
1

2
lnF11

e~22e!

N~12e!2G .

~37!

The random field approximation gives the result that
Lyapunov exponents are degenerate forua1u,a3 . This
N-fold degeneracy agrees with the numerical result that
Lyapunov spectra have almost flat shapes in the we
coupling phase~see Fig. 3!. However, the Lyapunov spectr
are not degenerate completely. Thus, this random field
proximation does not give the exact shapes of the Lyapu
spectra@see Figs. 4~a! and 5#. The disagreement is due to th
assumption thatSk for all paths are mutually independent. I
fact, Sk for a path correlates withSk8 for another path.

By assumingN is sufficiently large and by using the ap
proximation that ln(11x).x for x!1, we rewrite Eq.~37! as
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l i.l local1
e~22e!

2N~12e!2
. ~38!

Thus, the scaled Lyapunov spectrum is given by

L~ i /n;a,e!.
e~22e!

2~12e!2
. ~39!

This equation suggests that the scaled Lyapunov spectru
independent of the system sizeN. This agrees with the nu
merical result~11! in the weak-coupling phase. Moreove
Eq. ~39! suggests that the scaled Lyapunov spectr
L( i /n;a,e) does not depend ona. This agrees with the nu
merical indication that the scaled Lyapunov spectrum is
dependent ofa for sufficiently largea ~see Fig. 5!. The de-
viation seen for small values ofa may be due to the tendenc
that the correlation ofSk for different paths increases wit
decreasinga. Therefore, the scaling law~11! is explained
qualitatively by Eq.~38!. In addition, in the limit ofe→0,
we obtain Eq.~9! from Eq. ~38!.

On the other hand, whenua1u.a3 , all the elements of the
multiplier matrix MT diverge exponentially as$MT% i j .a1

T .
As a result, the largest eigenvalueg0 also diverges exponen
tially as O(a1

2T). From Eq.~17!, we obtain

l0. lnua1u5 ln a1 lnu2p21u. ~40!

Besides, the other eigenvaluesg i ( i>1) are still O(a3
2T)

becauseua2u,a3 . Thus, the other Lyapunov exponen
l i ( i>1) are given by Eq.~38!. This theoretical result ex
plains qualitatively the scaling law~12!, which holds except
the singularity for the largest Lyapunov exponent. Howev
as is seen from Fig. 4~d!, the exact shape of the scale
Lyapunov spectrum is not obtained either from this rand
field approximation.

When the system sizeN is sufficiently large, the approxi
mate value of the largest Lyapunov exponent is given by

l0.max„ln@au2p21u#, ln@a~12e!#…. ~41!

When u2p21u.12e, l0 depends on the skewnessp that
represents the average probability that the elements h
positive values. It is plausible thatp is estimated in the form

lnu2p21u[ lim
T→`

1

T (
t50

T21

lnu2pt21u, ~42!

wherept is the fraction of positive elements at timet. When
N is an even number, Eq.~42! is divergent if pt51/2 at
certain timet. However, this divergence is not significant f
the Lyapunov exponents because of the contribution fr
the random matrixRT . The most simple method to avoi
this irrelevant divergence is taking an odd number asN. We
use this method whenp is estimated. The numerical resu
for the largest Lyapunov exponent, ln@au2p21u#, and
ln @a(12e)# are plotted as functions ofe for a51.99 in Fig.
7. As is seen from Fig. 7, the theoretical prediction~41!
agrees well with the numerical calculation. The case
u2p21u,12e corresponds to the weak-coupling pha
while the case ofu2p21u.12e corresponds to the strong
is

-

r,

ve

f

coupling phase, as expected. It is evident that there exis
transition nearu2p21u512e. The same type of transition
was observed in CML by Pikovsky@31#. Pikovsky denoted
as ‘‘variance dominated’’ and ‘‘mean dominated’’ the wea
coupling and strong-coupling phases, respectively.

In the intermediate region, the theoretical prediction~41!
yields considerably smaller values than the numerical res
~see Fig. 7!. In order to explain this disagreement, we intr
duce the finite-time average ofu2pt21u as

ln q~ t;T![
1

T (
t85t

t1T21

lnu2pt821u. ~43!

Figure 8~a! shows the dependence ofq(t;T) on timet in the
intermediate region forT5100. Obviously, the value o
q(t;T) switches between two separated ranges interm
tently. Figure 8~b! shows temporal change of the finite-tim
Lyapunov exponentl0(t;T) for the same trajectory as Fig
8~a!. As is predicted from Eq.~41!, l0(t;T). ln@a q(t;T)#
during time intervals ofq(t;T).12e, whereasl0(t;T)

FIG. 7. Comparison between the numerical calculation and
random field approximation~41!. The numerical result for the larg
est Lyapunov exponent of Eq.~1! is plotted forN51000 ~circle!.
Cross marks represent ln@au2p21u# and the solid line represent
ln@a(12e)#. When p is calculated, we takeN51001 to avoid the
case ofpt51/2, in which Eq.~42! diverges. ln@au2p21u# is obtained
from an average over 105 steps as well asl0 .

FIG. 8. ~a! ln@a q(t;T)# is plotted as a function oft for a
51.99,e50.42,N51001, andT5100. ~b! l0(t;T) is plotted as a
function of t for the same trajectory as~a!. The horizontal broken
line represents ln@a(12e)#50.143 . . . .
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.ln@a(12e)# during time intervals ofq(t;T),12e, Thus,
the situation of the strong-coupling phase and that of
weak-coupling phase alternate. In Fig. 9, we show the dis
butions of ln@a q(t;T)# andl0(t;T) for the same parameter a
Fig. 8. The distribution of ln@a q(t;T)# has two well-defined
peaks~thick line in Fig. 9!. The lower peak exerts no influ
ence on the finite-time Lyapunov exponent. The higher p
agrees well with a peak of the distribution of the finite-tim
Lyapunov exponent~thin line!. Moreover, the distribution of
the finite-time Lyapunov exponent has a sharp peak
ln@a(12e)#, as expected.

The distributions of ln@a q(t;T)# for several values ofT are
shown in Fig. 10. For a sufficiently large value ofT, the
distribution has only one broad peak. In Fig. 10, the con
tion ln@a q(t;T)#,ln @a(12e)# is always satisfied whenT
5105. In this case,l0(t;T5105). ln@a(12e)# is expected
from the approximate estimation~41!. However, there are
time intervals where the system behaves as the la
coupling phase, as is seen from the intermittent motion of
finite-time Lyapunov exponent~see Fig. 8!. Thus, l0(t;T
5105) is considerably larger than the expected va
ln @a(12e)#. This random field approximation is not alway
good whenT is large.

FIG. 9. Comparison between the distributions of ln@a q(t;T)#
~thick line! and of the finite-time Lyapunov exponentl0(t;T) ~thin
line! for the same parameter as Fig. 8. The bin width is 228 and the
distributions are normalized for their integration to be 1.

FIG. 10. The distributions of ln@a q(t;T)# for several values of
T, a51.99, e50.42, andN51001. The cross marks represe
ln@a(12e)#.
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V. BAND-STRUCTURE AND TRANSITION

In the preceding section, we have obtained the relat
between the Lyapunov exponents and the distribution of
elements. The abrupt transformation of the distribution ta
place when chaotic bands are broken through tangent b
cation, as we see in the following.

To begin with, we assume that the mean field is const
Thus, the system has 2n chaotic bands when 222n11

,a(1
2e),222n

. In the limit of large size, the distribution func
tion defined by

r t~x!5 lim
N→`

1

N (
i 50

N21

d„x2xt~ i !… ~44!

is a constant function that consists of 2n separated supports
Whene50, this can be the case. Sincept is also independen
of the time stept, the skewnessp is determined by only the
value of a(12e). Under the above assumption,u2p21u is
smaller than 12e for any value ofa(12e), as is seen from
Fig. 11.

However, the real values ofu2p21u are different from the
values shown in Fig. 11 wheneÞ0. This is because neithe
the mean field nor the distribution function is constant. Th
successive snapshots ofr t(x) are shown in Fig. 12. When
the two-band structure is retained@Fig. 12~a!#, the time series
of pt is limited in a small domain. Thus, it is expected th
u2p21u is not over 12e. On the other hand, when the two
band structure is broken@Fig. 12~b!#, the distribution func-
tion has only one narrow support, which fluctuates cha
cally. Thus,pt often takes 1 or21. Accordingly, u2p21u
can exceed 12e. As an example, we consider the interm
tent behavior shown in Fig. 8. The temporal change of
distribution of xt( i ) is displayed in Fig. 13. During time
intervals where the system behaves as the weak-coup
phase, two chaotic bands are observed~compare Figs. 8 and
13!. On the other hand, no band structure is observed du
time intervals where the system behaves as the stro
coupling phase. Figure 13 suggests that the intermit
switching between the above two situations is due to
creation and the extinction of two-band structure.

FIG. 11. 2p21 is plotted as a function ofa(12e) if the mean
field is constant in the limit of large size. The broken line represe
the minimum value of (12e). Since the gradienta is in the range
1,a<2, (12e) has the minimum value ata52,
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Although there are also more than two band attractors,
focus on the two-band structure in the following. This
because the two-band structure is significant for Lyapu
exponents, besides which more than two bands are ra

FIG. 12. The three successive snapshots ofr t(x) are shown in
order as solid, dashed, and dot-dashed lines;~a! two-band structure
is retained fora51.99,e50.35; ~b! two-band structure is broken
for a51.99,e50.45. The distribution functionsr t(x) are calculated
by the nonlinear Frobenius-Perron equation.

FIG. 13. The temporal change of the distribution ofxt( i ) for the
same trajectory as Fig. 8.xt( i ) are plotted fori 50,1,2, . . . 99 at
every 100 time step.
e

v
ly

seen. To explore the two-band structure, we consider
two-iterated mapFt11„Ft(x)…, where Ft(x) was given by
Eq. ~4!. The shape ofFt11„Ft(x)… is determined byht and
ht11 . Two illustrations of the two-iterated maps fora(1
2e),A2 are given in Fig. 14. In Fig. 14~a!, the two-iterated
map has three unstable fixed points. Thus, two chaotic ba
exist and the elements in the two different bands are se
rated by the middle unstable fixed point. On the other ha
there is only one unstable fixed point in Fig. 14~b!. In this
case, one of the two chaotic bands is extinguished throug
tangent bifurcation. The two bands of the two-iterated m
are retained on the condition that the successive
(ht ,ht11) of the mean-field satisfy the following two equa
tions:

~12e!@12a~12e1eht!#1eht11,0,

~12e!@12a~12e1eht11!#1eht,0, ~45!

FIG. 14. The two-iterated mapsFt11„Ft(x)… at t511 100 and
t511168 for the same trajectory as Fig. 8 are shown. The thin li
are trajectories starting from apices.
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when a(12e),A2. In Fig. 1~b!, the criterion~45! is dis-
played as the region between the two broken lines. In
strong-coupling phase, the criterion~45! is satisfied at some
time steps but broken at the other time steps. Thus, the
terion ~45! is not a sufficient condition for the two-ban
structure to exist in the model~1!.

Taking into account the fact that the bifurcation structu
of the model~1! depends ona(12e) in a rugged way~see
Fig. 11 and@20,23#!, it is desirable that the value ofa(1
2e) be fixed in order to study the transition. Thus, we co
sider the situation in whiche increases progressively wit
fixed a(12e). When two-band structure is retained, t
number of elements in each band is constant. Thus, t
exist a lot of two-band states that are characterized by
population (N1 ,N2) of the elements in each band. To disti
guish these states, we define the population ratio
max(n1,n2), wheren15N1 /N, n25N2 /N, and n11n251.
The coupling strength beyond which the two-band state
unstable depends on the population ratio~Fig. 15!. The two-
band state with the population ratio 1/2 is the most stable
is seen from Fig. 15. Letec denote the coupling strength a
which the two-band state with population ratio 1/2 loses
stability. Thus, there is no stable two-band structure ab
the critical couplingec . The critical couplingec increases
with the system sizeN ~see Fig. 16!. This is due to the
finite-size effect that the fluctuation of the mean field d
creases with the system size. For some values ofa(12e),
the critical couplingec appears to saturate@the cases of
a(12e)51.05,1.10,1,15 in Fig. 16#. Thus, the transition ex
ists in the limit of large size. On the other hand, there
values ofa(12e) where the two-band structure is alwa
retained for sufficiently large system size in the range o
,a<2 ande.0 @the case ofa(12e)51.20 in Fig. 16#.

The order parameterH is defined as the fraction of th
time steps when Eq.~45! is not fulfilled. If H50, the distri-
bution function is always two-band. Figure 17 showsH
when e increases progressively with fixeda(12e). Here,
the initial condition is selected that the population ratio
1/2 for e50.2. For small values ofa(12e) @Fig. 17~a!#, the
change ofH has a clear jump. In this case, a hysteresis

FIG. 15. The coupling strengthe beyond which the two band
are broken is plotted as a function of the population ratio betw
the two bands. We numerically calculate by averaging over 20
alizations wheree increases by 0.0001 every 106 time steps for the
system ofN5100. The lines are to guide the readers’ eyes.
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observed, as seen from the dashed line in Fig. 17~a!. On the
other hand, for large values ofa(12e), neither jump nor
hysteresis is observed@see Figs. 17~b!, 17~c!, and 17~d!#.
Even in the region where all two-band states are unstable
system can spend long stretches of time being a two-b
state. Thus, the intermittent behavior seen in Fig. 8 exist
the wide parameter region. As a result,H changes gradually

In order to characterize the intermittent behavior, we c
culate the probability of temporary two-band states of du
tion t. Let D(t) denote the distribution probability of th
duration t, which is measured by using the criterion~45!.
Even when no temporary two-band state is observ
(ht ,ht11) often enters in the region described by Eq.~45!. In
the region~45!, the rate of the exponential divergence for t

n
-

FIG. 16. The critical couplingec is plotted as a function of the
system sizeN, where the initial condition is the two-band-structu
whose population ratio is 1/2. We calculate in the same way as
15. The lines are to guide the readers’ eyes.

FIG. 17. The order parameterH is plotted as a function ofe for
three values of system size. The order parameterH is averaged over
20 realizations wheree increases by 0.0001 every 106 time steps.
The initial condition is selected that the population ratio is 1/2
e50.2. ~a! a(12e)51.05; ~b! a(12e)51.10; ~c! a(12e)
51.15; ~d! a(12e)51.20. In ~a!, the dashed line represents th
order parameterH whene decreases forN5160. This dashed line
is not shown in~b!, ~c!, and~d!, because no hysteresis is observe
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FIG. 18. The distributionsD(t) of the lengtht during which
the criterion~45! is retained. The distributions are calculated from
trajectory over 1010 time steps.~a! Linear-log plotting for the case
that no two-band structure is observed:a51.75, e50.4 @a(12e)
51.05#, N5160. The distribution probability has exponential d
cay asD(t)}a2t. The broken line represents an exponential de
with ratea. ~b! Linear-log plotting for the case in which intermit
tent behavior is observed:a52, e50.4 @a(12e)51.2#, N5160.
There is another exponential decay with a considerably smaller
cay rate. The broken line represents an exponential decay with
1.006. The blowup is shown in the inset. The broken line in
inset represents an exponential decay with ratea. ~c! Log-log plot-
ting for the case ofe50.335;ec when a(12e)51.20 andN
5160. The dashed line represents the fitting power law with
exponent22.63 . . . .
mean field is given bya approximately@refer to Fig. 2~b!#.
Thus, the distribution probabilityD(t) is expected to have
the exponential decay asD(t)}a2t. The numerical result
agrees well with this expectation@Fig. 18~a!#. This fast ex-
ponential decay is not relevant to the intermittent behav
On the other hand, when the intermittent behavior is o
served, a slow exponential decay also exists inD(t) @Fig.
18~b!#. Thus, the probability of the duration of the tempora
two-band states decays exponentially. This result indica
that the temporary two-band state has a characteristic t
which is longer than the time scale of the individual chao
elements. This characteristic time increases whene de-
creases. Since fore,ec two-band states became attracto
this characteristic time is expected to diverge atec . In the
neighborhood ofec , the distribution probabilityD(t) obeys
a power law, as is seen from Fig. 18~c!. In Fig. 18~c!, the
deviation from the power law is seen whent;1. It is be-
cause there is also the exponential decay, which is irrelev
to the intermittent behavior. The preliminary calculation su
gests that the exponent of the power law depends on
a(12e) but is independent ofN. However, there is a limit
in the approach using the criterion~45!, because this crite-
rion is not a sufficient condition in which temporary two
band states can exist. A different approach would be requ
to study the critical phenomena and the universality clas
of the transitions in detail.

VI. CONCLUSION

We have investigated the Lyapunov spectra in globa
coupled tent maps. There are two phases in the scatt
region, where the completely synchronized state is unsta
In the weak-coupling phase, the Lyapunov spectra obey
scaling law~11! with varying N. The strong-coupling phas
is seen between the weak-coupling and the completely s
chronized states. Even in the strong-coupling phase, the s
ing law holds except for the singularity of the large
Lyapunov exponent. We note here that the scaling law is
always clear in a medium region between the weak-coup
and strong-coupling phases. This is due to the intermitt
behavior~Fig. 8! and the dependence of the critical couplin
ec on the system sizeN ~Figs. 16 and 17!.

The theoretical calculation by the random field appro
mation explained qualitatively the nature of the Lyapun
spectra. This study demonstrated that the skewnessp @or
q(t;T)] of the distribution of the elements is important to th
Lyapunov exponents. The exact shape of the sca
Lyapunov spectrumL(x;a,e) was not given by this random
field approximation. The correlation between the element
considered only through the skewnessp. The exact shape o
L(x;a,e) may be determined by the correlation, which w
ignored in our approximation.

The largest Lyapunov exponent was estimated as Eq.~41!
for sufficiently large system size. This result indicated the
is a transition. In the previous paper@33#, this transition was
investigated in terms of the competition between the loc
instability ratel local and the collective-motion-instability rat
L. In this paper, the random field approximation showed t
this transition is also due to the competition between
random matrix terma3

TRT and the constant oneAT . Appar-
ently, the elements of the random matrixa3

TRT are given as
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6exp(llocal) for N→`. Thus, the matrixAT is expected to
be relevant to the collective-motion-instability-rateL. While
in the weak-coupling phase the largest Lyapunov expon
depends only on the system parameters, in the stro
coupling phase it depends also on the skewnessp.

We characterized the intermittent switching between
two phases by introducing the finite-time average
u2pt21u. This intermittent switching is due to tangent bifu
cations due to the temporal change of the mean field. T
tangent bifurcation is explained well by using the tw
iterated map. ‘‘Internal’’ bifurcations such as this have be
studied in connection with the quasiperiodic collective m
tion in globally coupled logistic maps by Shibata a
Kaneko@22#. The intermittent behavior is observed even
the limit of large size. The temporary two-band state ha
characteristic time. The characteristic time depends on
parametersa, e, andN.

Furthermore, we explored the transition in terms of tw
band structure of the two-iterated map. Continuous and
continuous transitions were observed. In the case of the
tinuous transition, the transition point depends on the sys
size. Near the transition point, there is a power law in
probability of the duration of the temporary two-band stat
Recently the nonequilibrium transitions in high-dimension
e

nt
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e
f
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n
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e

-
s-
n-
m
e
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l

chaos have been investigated in connection with phase t
sitions in equilibrium systems@34–41#. There are severa
coupled nonlinear systems that show the clear critical pr
erties@5,26,34–39#. The investigation of the critical proper
ties for our transition is now progress. On the other hand
the case of smalla(12e) @Fig. 17~a!#, we had a discontinu-
ous transition. Discontinuous phase transitions such as
have been reported for some coupled nonlinear syst
@40,41#. Our transition is complicated because the wea
coupling phase has a lot of ‘‘macroscopic’’ separated sta
depending on the population ratio of two separated bands
addition, since the concept of space loses meaning for glo
coupling, the correlation between any two elements sho
never be ignored. In order to understand clearly the criti
phenomena of the transition for the globally coupled s
tems, more research would be required.
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